

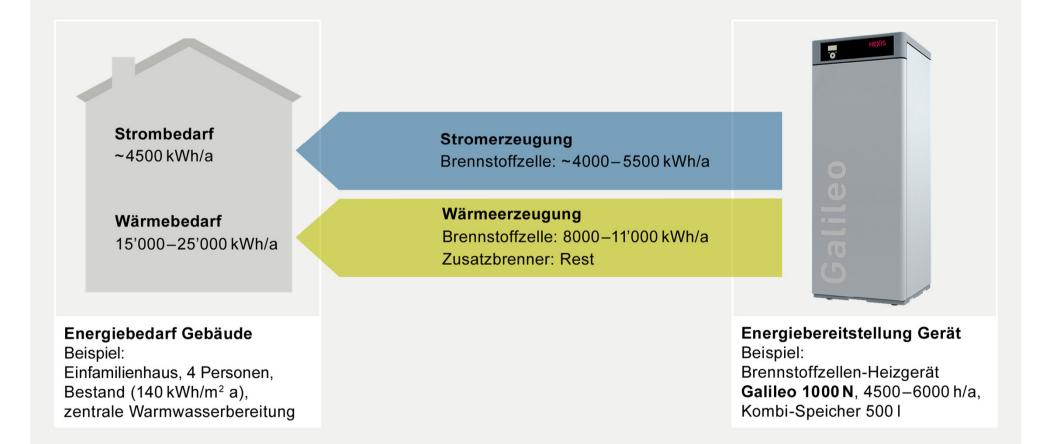
Unterschiedliche Massnahmen zur CO₂-Minderung

Methan als Primärenergie Die Wandlung der Versorgungswelt

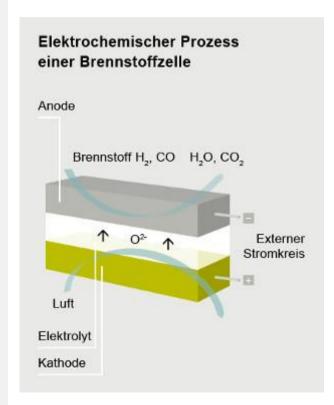
Technologie zur Energiewende Mikro-KWK in Brennstoffzellen

Warum Mikro-KWK mit Brennstoffzellen?

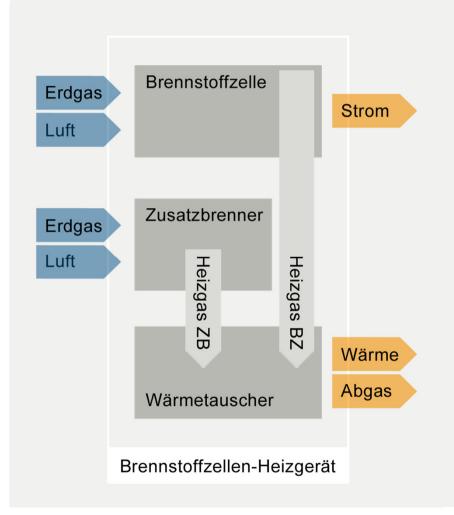
- Brennstoffzellen als effizienteste Wandler-Technologie
- Wärme- und Strombedarf passen zeitlich gut zusammen
- WKK-Anlagen sind regelbare Energiewandler
- Der Brennstoff Erdgas wird zunehmend «grüner»
- Bedürfnis der Kunden zur (Teil-)Autonomie



Wo Mikro-WKK mit Brennstoffzellen?


- Gebäudebestand ⇔ Neubau
 - → verschiedene «passende» Technologien
 - → Mikro-KWK bevorzugt im Gebäudebestand
- Energiepolitik & Kundenbedürfnis
 - → globale Zielsetzungen ⇔ lokale Gegebenheiten und Bedürfnisse
 - → Technologieoffenheit

Technologie zur Energiewende Massgeschneiderte Entwicklung


Hochtemperatur-Brennstoffzelle im System HEXIS-SOFC-Funktionsprinzip

Brennstoffzellen-Heizgerät Galileo 1000 N Aufbau

Brennstoffzellen-Heizgerät Galileo 1000 N Spezifikationen

Brennstoffzelle

Elektrische Leistung 1 k\

Thermische Leistung

Elektrischer Wirkungsgrad

Gesamt-Wirkungsgrad

Betrieb

Emissionen

1 kWel (AC, netto)

1.8 kWth

30-35 %

95 % (Hu, $T_{RL} = 30 \, ^{\circ}\text{C}$)

modulierend, im Sommer aus

NOx < 30 mg/kWh

Schall < 30 dB(A)

Zusatzbrenner

Thermische Leistung

Betrieb

Gesamtwirkungsgrad

5-20 kWth

modulierend, WWB im Sommer

 $109 \% (Hu, T_{RL} = 30 °C)$

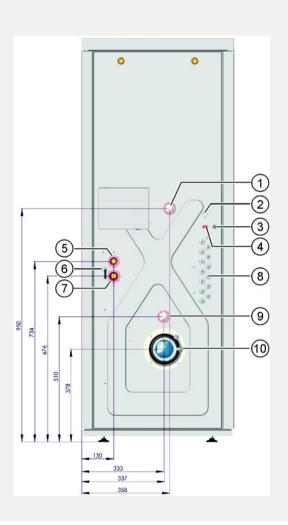
Gesamtes Gerät

Jährliche Betriebsdauer

Grösse

Gewicht

5'000 - 6'000 h/a


640 x 560 x 1640 mm

170 kg

CE-zertifiziert

Brennstoffzellen-Heizgeräte Galileo 1000 N Installation /1

- 1 Anschluss Heizungsvorlauf, Aussengewinde G1" flachdichtend
- 2 Hauptschalter
- 3 Resetschalter
- 4 Schnittstelle RS232/Sub-D 9
- 5 Gasanschluss Brennstoffzelle, Innengewinde 1/2"
- 6 Kondensataustrag
- 7 Gasanschluss Zusatzbrenner, Innengewinde 1/2"
- 8 Kabeldurchführungen
- 9 Anschluss Heizungsrücklauf, Aussengewinde G1", flachdichtend 10 LAS-Anschluss

Brennstoffzellen-Heizgeräte Galileo 1000 N Installation /3

Brennstoffzellen-Heizgerät Galileo 1000 N Merkmale

Umweltschutz

Niedrigste Schadstoff- und Lärmemissionen

Ressourcenschonung

- Hoch effiziente Brennstoffnutzung durch elektrochemische Energiewandlung und Kraft-Wärme-Kopplung
- Verbrauchernahe "lastnahe" Installation der Anlagen und damit geringe Übertragungs- und Verteilungsverluste.

Kundenbedürfnis

- Bedarfsgerechte Strom- und Wärmebereitstellung
- Abdeckung des Wärmebedarfs, auch bei Stromausfall
- Einfache Installation in vorhandene Haus-Infrastruktur
- Geringer Platzbedarf

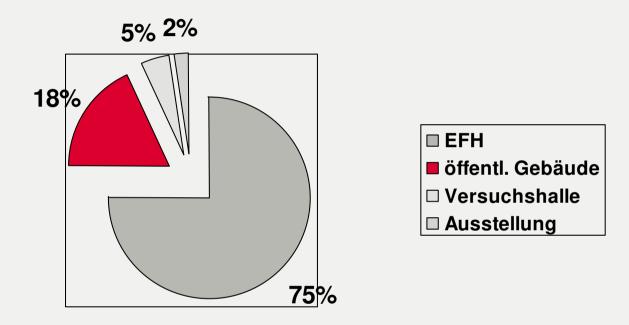
Brennstoffzellen-Heizgerät Galileo 1000 N Markt

Vermarktungsidee

- Einsatz im Einfamilienhaus zur Abdeckung des Stromgrund- und kompletten Wärmebedarfs
- Erzeugung von Strom aus günstigem Erdgas und Ersatz vom Strombezug aus dem Netz
- Ersatz des Gas-/Öl-Heizkessels

Grundvoraussetzung für den Betrieb

- Pumpen-Warmwasserheizung
- Anschluss an Strom- und Erdgasnetz
- Mindestwärmebedarf


Aufstellraum

Erfahrungen und Erwartungen Test mit über 150 BZH

Erfahrungen und Erwartungen Installierte Feldtestanlagen nach Anwendung

- Die durchschnittliche Betriebsdauer im Anwendungsfall "EFH" beträgt ca. 5050 h/Jahr
- Die mittlere Verfügbarkeit im SOFC-Betrieb beträgt > 95%
- Der Gesamtnutzungsgrad (thermisch und elektrisch) liegt zwischen ca. 82 und 95% (HU)

Erfahrungen und Erwartungen Kennzahlen aus dem Feld

Kennzahl BZH	Wert
Verhältnis Gasbedarf BZ zu Gasbedarf vom BZH	80 %
Wärmedeckungsgrad, inkl. TWW	70 %
Stromdeckung Hausbedarf	90 %
Stromüberschuss (Einspeisung)	30 %
Thermischer Nutzungsgrad (nur Nutzwärme, inkl. Speicherverluste und ZB)	56.4 %
Elektrischer Nutzungsgrad (AC,netto)	29.7 %
Gesamtnutzungsgrad	86.1 %
Jahresstromproduktion (AC,netto)	4'500 kWh/a

Bemerkungen

- Messwerte aus Heizperiode 2010/11
- aufgenommen im Niedrigenergiehaus (also einem eher ungünstigen Objekt)
- alle Werte auf HU bezogen

Unternehmen Hexis Überblick

Firma

Muttergesellschaft in Winterthur (CH), Tochtergesellschaft in Konstanz (D)

30 Mitarbeiter

Unternehmen der Viessmann Group, Allendorf (D) und der Stiftung für Kunst, Kultur und Geschichte, Winterthur (CH)

Hochtemperatur-Brennstoffzelle

SOFC kleiner Leistung

Vom Pulver zum einsatzfähigen System

Über 20 Jahre Erfahrung in der SOFC-Entwicklung

Umfangreiche Test-Infrastruktur

System-und Stackprüfstände

Button Cell, Short Stack, BZ-System

Material-, Langzeit- und Prozesstest

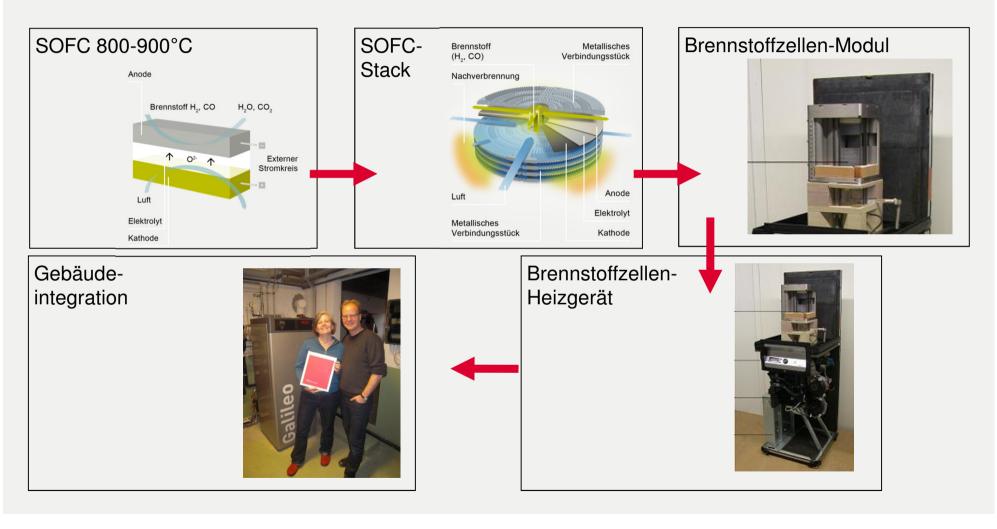
Produktion

Zell-Produktion und Stack-Montage

Kapazität für bis zu 20'000 Zellen/a (ca. 300 BZH)

Qualitätskontrolle

Kapazität für ca. 5-8 Stacks und BZM/d


Pilot-Produktion für BZH

Kapazität für 1-2 BZH/d

CE-zertifizierte Montage und Endkontrolle

Unternehmen Hexis Vom Pulver zum kompletten System

Hexis und Galileo 1000 NFazit

- Technischer Fortschritt (Lebensdauer, Robustheit, Leistungsfähigkeit) auf dem Weg, über 2 Mio. h Betriebserfahrung, Gesamtnutzungsgrad ca. 82 % bis 95 % (HU) → Markteinführung ab Herbst diesen Jahres sehr realistisch,
- Feldtest-Erfahrungen mit mehr als 150 BZH → Hohe Verfügbarkeit und Bestätigung der technischen Daten
- Schulung von mehr als 100 Handwerkern → Erfolgreicher Aufbau von Wissen und Erfahrung bei wichtigen Partnern im Markt
- Sehr positives Feedback des Handwerks bezüglich Planung, Installation und Service → Galileo vergleichbar mit Gas-Brennwertkessel
- Vertriebs- und Servicekooperation mit etablierten Unternehmen aus der Heizungswirtschaft → Marktzugang für Galileo gesichert
- Marktumfeld ändert sich zugunsten Mikro-Kraft-Wärme-Kopplung → Mit Galileo 1000 N bekommt die Energiewende die entsprechende Technologie

Vielen Dank für Ihre Aufmerksamkeit

HEXIS AG

Zum Park 5 | 8404 Winterthur | Schweiz T +41 52 262 82 07 | F +41 52 262 63 33 info@hexis.com | www.hexis.com